Nanoscale Molecular Dynamics Simulaton of Shock Compression of Silicon

نویسندگان

  • I. I. Oleynik
  • S. V. Zybin
  • M. L. Elert
  • C. T. White
چکیده

We report results of molecular dynamics simulation of shock wave propagation in silicon in [100], [110], and [111] directions obtained using a classical environment-dependent interatomic potential (EDIP). Several regimes of materials response are classified as a function of shock wave intensity using the calculated shock Hugoniot. Shock wave structure in [100] and [111] directions exhibit usual evolution as a function of piston velocity. At piston velocities 1.25< 2.75 p v < km/s the shock wave consists of a fast elastic precursor followed by a slower plastic front. At larger piston velocities the single overdriven plastic wave propagates through the crystal causing amorphization of Si. However, the [110] shock wave exhibits an anomalous materials response at intermediate piston velocities around 1.75 p v km/s which is characterized by the absence of plastic deformations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rate dependent deformation of a silicon nanowire under uniaxial compression: Yielding, buckling and constitutive description

0927-0256/$ see front matter Crown Copyright 2 doi:10.1016/j.commatsci.2011.07.037 ⇑ Corresponding author. Address: Mechanical Engin of Mechanical and Manufacturing Engineering, The Un NSW 2052, Australia. Tel.: +61 2 9385 6078; fax: +61 E-mail address: [email protected] (L.C. This paper investigates the effect of compressive strain rate on the mechanical behaviour of single crystallin...

متن کامل

Nanoscale interface of metals for withstanding momentary shocks of compression.

The failure of the nanoscale metallic interface has raised concerns owing to the effect interfacial amalgamation has on its application in nanoelectronic devices. Single crystal copper [110] and [100], which are set as two components of [110]‖[100] nanocrystalline copper, are used to simulate the interfacial properties using molecular dynamics simulations. Repeated tension and compression cycle...

متن کامل

Structural modifications in fused silica due to laser damage induced shock compression

High power laser pulses can produce damage in high quality fused silica optics that can lead to its eventual obscuration and failure. Current models suggest the initiation of a plasma detonation due to absorbing initiators and defects, leading to the formation of shock waves. Recent experiments have found a densified layer at the bottom of damage sites, as evidence of the laser-damage model. We...

متن کامل

A molecular dynamics simulation of water transport through C and SiC nanotubes: Application for desalination

In this work the conduction of ion-water solution through two discrete bundles of armchair carbon and silicon carbide nanotubes, as useful membranes for water desalination, is studied. In order that studies on different types of nanotubes be comparable, the chiral vectors of C and Si-C nanotubes are selected as (7,7) and (5,5), respectively, so that    a similar volume of fluid is investigated ...

متن کامل

A molecular dynamics simulation of water transport through C and SiC nanotubes: Application for desalination

In this work the conduction of ion-water solution through two discrete bundles of armchair carbon and silicon carbide nanotubes, as useful membranes for water desalination, is studied. In order that studies on different types of nanotubes be comparable, the chiral vectors of C and Si-C nanotubes are selected as (7,7) and (5,5), respectively, so that    a similar volume of fluid is investigated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005